Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.495
Filter
1.
Geobiology ; 22(2): e12595, 2024.
Article in English | MEDLINE | ID: mdl-38596869

ABSTRACT

On the anoxic Archean Earth, prior to the onset of oxidative weathering, electron acceptors were relatively scarce, perhaps limiting microbial productivity. An important metabolite may have been sulfate produced during the photolysis of volcanogenic SO2 gas. Multiple sulfur isotope data can be used to track this sulfur source, and indeed this record indicates SO2 photolysis dating back to at least 3.7 Ga, that is, as far back as proposed evidence of life on Earth. However, measurements of multiple sulfur isotopes in some key strata from that time can be challenging due to low sulfur concentrations. Some studies have overcome this challenge with NanoSIMS or optimized gas-source mass spectrometry techniques, but those instruments are not readily accessible. Here, we applied an aqua regia leaching protocol to extract small amounts of sulfur from whole rocks for analyses of multiple sulfur isotopes by multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). Measurements of standards and replicates demonstrate good precision and accuracy. We applied this technique to meta-sedimentary rocks with putative biosignatures from the Eoarchean Isua Supracrustal Belt (ISB, >3.7 Ga) and found positive ∆33S (1.40-1.80‰) in four meta-turbidites and negative ∆33S (-0.80‰ and -0.66‰) in two meta-carbonates. Two meta-basalts do not display significant mass-independent fractionation (MIF, -0.01‰ and 0.16‰). In situ Re-Os dating on a molybdenite vein hosted in the meta-turbidites identifies an early ca. 3.7 Ga hydrothermal phase, and in situ Rb-Sr dating of micas in the meta-carbonates suggests metamorphism affected the rocks at ca. 2.2 and 1.7 Ga. We discuss alteration mechanisms and conclude that there is most likely a primary MIF-bearing phase in these meta-sediments. Our new method is therefore a useful addition to the geochemical toolbox, and it confirms that organisms at that time, if present, may indeed have been fed by volcanic nutrients.


Subject(s)
Carbonates , Sulfur Isotopes/analysis
2.
Talanta ; 274: 126056, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38599123

ABSTRACT

Early diagnosis is paramount for enhancing survival rates and prognosis in the context of malignant diseases. Hepatocellular carcinoma (HCC), the second leading cause of cancer-related deaths worldwide, poses significant challenges for its early detection. In this study, we present an innovative approach which contributed to the early diagnosis of HCC. By lanthanide encoding signal amplification to map glycan-linkages at the single-cell level, the minute quantities of "soft" glycan-linkages on single cell surface were converted into "hard" elemental tags through the use of an MS2 signal amplifier. Harnessing the power of lanthanides encoded within MS2, we achieve nearly three orders of magnitude signal amplification. These encoded tags are subsequently quantified using single-cell inductively coupled plasma mass spectrometry (SC-ICP-MS). Linear discriminant analysis (LDA) identifies seven specific glycan-linkages (α-2,3-Sia, α-Gal, α-1,2-Fuc, α-1,6-Fuc, α-2,6-Sia, α-GalNAc, and Gal-ß-1,3-GalNAc) as biomarkers. Our methodology is initially validated at the cellular level with 100% accuracy in discriminating between hepatic carcinoma HepG2 cells and their normal HL7702 cells. We apply this approach to quantify and classify glycan-linkages on the surfaces of 55 clinical surgical HCC specimens. Leveraging these seven glycan-linkages as biomarkers, we achieve precise differentiation between 8 normal hepatic specimens, 40 early HCC specimens, and 7 colorectal metastasis HCC specimens. This pioneering work represents the first instance of employing single-cell glycan-linkages as biomarkers promising for the early diagnosis of HCC with a remarkable 100% predictive accuracy rate, which holds immense potential for enhancing the feasibility and precision of HCC diagnosis in clinical practice.

3.
J Agric Food Chem ; 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38602484

ABSTRACT

Rapeseed (Brassica napus L.) has the ability of selenium (Se) enrichment. Identification of selenides in Se-rich rapeseed products will promote the development and utilization of high value. By optimizing the Se species extraction process (protease type, extraction reagent, enzyme sample ratio, extraction time, etc.) and chromatographic column, an efficient, stable, and accurate method was established for the identification of Se species and content in rapeseed seedlings and flowering stalks, which were cultured by inorganic Se hydroponics. Five Se compounds, including selenocystine (SeCys2), methylselenocysteine (MeSeCys), selenomethionine (SeMet), selenite (SeIV), and selenate (SeVI) were qualitatively and quantitatively identified. Organoselenium was absolutely dominant in both seedlings and flowering stalks among the detected rapeseed varieties, with 64.18-90.20% and 94.38-98.47%, respectively. Further, MeSeCys, a highly active selenide, predominated in rapeseed flowering stalks with a proportion of 56.36-72.93% and a content of 1707.3-5030.3 µg/kg. This study provides a new source of MeSeCys supplementation for human Se fortification.

4.
Neurotoxicology ; 102: 96-105, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38582332

ABSTRACT

BACKGROUND: Manganese (Mn) is an essential micronutrient as well as a well-established neurotoxicant. Occupational and environmental exposures may bypass homeostatic regulation and lead to increased systemic Mn levels. Translocation of ultrafine ambient airborne particles via nasal neuronal pathway to olfactory bulb and tract may be an important pathway by which Mn enters the central nervous system. OBJECTIVE: To measure olfactory tract/bulb tissue metal concentrations in Mn-exposed and non-exposed mineworkers. METHODS: Using inductively coupled plasma-mass spectrometry (ICP-MS), we measured and compared tissue metal concentrations in unilateral olfactory tracts/bulbs of 24 Mn-exposed and 17 non-exposed South African mineworkers. We used linear regression to investigate the association between cumulative Mn exposures and olfactory tract/bulb Mn concentration. RESULTS: The difference in mean olfactory tract/bulb Mn concentrations between Mn-exposed and non-Mn exposed mineworkers was 0.16 µg/g (95% CI -0.11, 0.42); but decreased to 0.09 µg/g (95% CI 0.004, 0.18) after exclusion of one influential observation. Olfactory tract/bulb metal concentration and cumulative Mn exposure suggested there may be a positive association; for each mg Mn/m3-year there was a 0.05 µg/g (95% CI 0.01, 0.08) greater olfactory tract/bulb Mn concentration overall, but -0.003 (95% CI -0.02, 0.02) when excluding the three influential observations. Recency of Mn exposure was not associated with olfactory tract/bulb Mn concentration. CONCLUSIONS: Our findings suggest that Mn-exposed mineworkers might have higher olfactory tract/bulb tissue Mn concentrations than non-Mn exposed mineworkers, and that concentrations might depend more on cumulative dose than recency of exposure.

5.
Bull Environ Contam Toxicol ; 112(4): 55, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38565721

ABSTRACT

In August 2021, the Mar Menor, a saltwater lagoon located in the Region of Murcia (Spain), suffered a tragic environmental episode of dystrophic crisis and anoxia. The appearance of numerous dead fish in different areas of the lagoon over the course of days put all the authorities and the population of the area on alert. This paper shows a case study of what happened in the lagoon in terms of the presence of the most common inorganic pollutants. Measurements of the concentration of nitrogen species, phosphates and main heavy metals were carried out at different sampling sites in the Mar Menor from May 2021 to November 2022. Chemical analyses were carried out for each of the species under study. These analyses provide valuable information about the dystrophic crisis caused by a classic eutrophication process that began with the excessive nutrient input into the Mar Menor. Ion chromatography and Inductively Coupled Plasma Mass Spectrometry (ICP-MS) were used as instrumentation for the quantification of these samples. The species whose values were greatly increased after the tragic episode described above were nitrates. The concentration varied significantly at the different sampling sites throughout the study. On the last sampling date, decreased concentrations of all the species were measured at each of the sampling sites, coinciding with the apparent good state of the lagoon.


Subject(s)
Water Pollutants, Chemical , Animals , Water Pollutants, Chemical/analysis , Environmental Monitoring , Gas Chromatography-Mass Spectrometry , Nitrates/analysis , Spain
6.
J Immunol Methods ; 528: 113666, 2024 May.
Article in English | MEDLINE | ID: mdl-38574805

ABSTRACT

OBJECTIVE: The clinical value of Serum amyloid A (SAA) and Lactoferrin (LTF) has received significant attention, but their detection methods are inadequate, which limits their application. This study aims to develop a dual detection method based on stable element labeling strategies and inductively coupled plasma mass spectrometry (ICP-MS) for SAA/LTF and to assess whether it can be widely used in clinical practice. METHODS: A duplex immunoassay system based on sandwich method was constructed. After optimization, methodological evaluation was performed with the guidelines of Clinical Laboratory Standards Institute (CLSI). Finally, 131 plasma samples were collected to analyze whether the new method is suitable for clinical detection. RESULTS: The LoB, LLoQ, ULoQ, and linear range of the assay were 1.09 ng/mL, 3 ng/mL, 1500 ng/mL, 3-1500 ng/mL for SAA and 0.85 ng/mL, 2 ng/mL, 1200 ng/mL, 2-1200 ng/mL for LTF respectively. The recovery rates were 95.01% to 106.26%, the intra-batch precision of low, intermediate, and high-level samples was <8%, and the inter-batch of them was <11%, the deviation of interference test results was less than±10%. The Area Under the Curve (AUC) was 0.9809 for SAA, 0.8599 for LTF, and 0.9986 for combination. CONCLUSION: The quantitative duplex immunoassay for SAA/LTF has high accuracy, good precision, and high specificity, which meets the clinical testing requirements and can be widely used in clinical practice.


Subject(s)
Serum Amyloid A Protein , Immunoassay/methods , Mass Spectrometry/methods
7.
Clin Chem Lab Med ; 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38641868

ABSTRACT

OBJECTIVES: Trace elements (TEs) are ubiquitous. TE concentrations vary among individuals and countries, depending on factors such as living area, workplaces and diet. Deficit or excessive TEs concentrations have consequences on the proper functioning of human organism so their biomonitoring is important. The aim of this project was to provide reference values for TEs concentrations in the Swiss population. METHODS: The 1,078 participants to the SKiPOGH cohort included in this study were aged 18-90 years. Their 24-h urine and/or plasma samples were analyzed by inductively coupled plasma mass spectrometry (ICP-MS) to determine 24 TEs concentrations: Ag, Al, As, Be, Bi, Cd, Co, Cr, Cu, Hg, I, Li, Mn, Mo, Ni, Pb, Pd, Pt, Sb, Se, Sn, Tl, V and Zn. Statistical tests were performed to evaluate the influence of covariates (sex, age, BMI, smoking) on these results. Reference intervals for the Swiss adult population were also defined. RESULTS: TEs concentrations were obtained for respectively 994 and 903 persons in plasma and urine matrices. It was possible to define percentiles of interest (P50 and P95) for almost all the TEs. Differences in TEs distribution between men and women were noticed in both matrices; age was also a cofactor. CONCLUSIONS: This first Swiss biomonitoring of a large TEs-panel offers reference values in plasma and in urine for the Swiss population. The results obtained in this study were generally in line with clinical recommendations and comparable to levels reported in other population-based surveys.

8.
Talanta ; 275: 126093, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38615453

ABSTRACT

The essential utilization of rare earth elements (REEs) for the production of several electronic devices is making the demand for them being increased all the time. This extensive use of these elements has also increased concern about human and environmental health. Previous studies have shown that REE levels are higher in environmental samples near mining sites, and they are highly possible to be transferred to biota. In this study, REE levels were determined in environmental samples collected from three abandoned mining sites of bauxite (Gargano, Otranto, and Spinazzola) in the region of Puglia, Southern Italy. The samples were digested and analyzed by two different techniques, Total X-Ray Fluorescence (TXRF) and Inductively Coupled Plasma - Mass Spectroscopy (ICP-MS) to investigate which technique is the most suitable for analysis of the REE content in samples from abandoned mining sites of bauxite. Only 6 REEs could be detected by TXRF, while all REEs were detected in all the samples by ICP-MS. Spinazzola is the richest site and Ce the most abundant REE in all three regions. REE levels are correlated between the soil and biota samples in many cases, although the calculation of the bioconcentration factor showed that REEs are not bioaccumulative. ICP-MS seems to be a more suitable technique for analysis of the whole REE content in environmental samples from abandoned mining sites of bauxite.

9.
Front Physiol ; 15: 1354091, 2024.
Article in English | MEDLINE | ID: mdl-38655027

ABSTRACT

The effects of lithium (Li) isotopes and their impact on biological processes have recently gained increased attention due to the significance of Li as a pharmacological agent and the potential that Li isotopic effects in neuroscience contexts may constitute a new example of quantum effects in biology. Previous studies have shown that the two Li isotopes, which differ in mass and nuclear spin, have unusual different effects in vivo and in vitro and, although some molecular targets for Li isotope fractionation have been proposed, it is not known whether those result in observable downstream neurophysiological effects. In this work we studied fluxes of Li+, sodium (Na+) and calcium (Ca2+) ions in the mitochondrial sodium/calcium/lithium exchanger (NCLX), the only transporter known with recognized specificity for Li+. We studied the effect of Li+ isotopes on Ca2+ efflux from heart mitochondria in comparison to natural Li+ and Na+ using Ca2+-induced fluorescence and investigated a possible Li isotope fractionation in mitochondria using inductively coupled plasma mass spectrometry (ICP-MS). Our fluorescence data indicate that Ca2+ efflux increases with higher concentrations of either Li+ or Na+. We found that the simultaneous presence of Li+ and Na+ increases Ca2+ efflux compared to Ca2+ efflux caused by the same concentration of Li+ alone. However, no differentiation in the Ca2+ efflux between the two Li+ isotopes was observed, either for Li+ alone or in mixtures of Li+ and Na+. Our ICP-MS data demonstrate that there is selectivity between Na+ and Li+ (greater Na+ than Li+ uptake) and, most interestingly, between the Li+ isotopes (greater 6Li+ than 7Li+ uptake) by the inner mitochondrial membrane. In summary, we observed no Li+ isotope differentiation for Ca2+ efflux in mitochondria via NCLX but found a Li+ isotope fractionation during Li+ uptake by mitochondria with NCLX active or blocked. Our results suggest that the transport of Li+ via NCLX is not the main pathway for Li+ isotope fractionation and that this differentiation does not affect Ca2+ efflux in mitochondria. Therefore, explaining the puzzling effects of Li+ isotopes observed in other contexts will require further investigation to identify the molecular targets for Li+ isotope differentiation.

10.
J Hazard Mater ; 471: 134364, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38657508

ABSTRACT

It is well known that arsenic is one of the most toxic elements. However, measuring total arsenic content is not enough, as it occurs in various forms that vary in toxicity. Since honey can be used as a bioindicator of environmental pollution, in the present study the concentration of arsenic and its species (As(III), As(V), DMA, MMA and AsB) was determined in honey samples from mostly Poland and Ukraine using HPLC-ICP-MS hyphenated technique. The accuracy of proposed methods of sample preparation and analysis was validated by analyzing certified reference materials. Arsenic concentration in honey samples ranged from 0.12 to 13 µg kg-1, with mean value of 2.3 µg kg-1. Inorganic arsenic forms, which are more toxic, dominated in honey samples, with Polish honey having the biggest mean percentage of inorganic arsenic species, and Ukrainian honey having the lowest. Furthermore, health risks resulting from the consumption of arsenic via honey were assessed. All Target Hazard Quotient (THQ) values, for total water-soluble arsenic and for each form, were below 1, and all Carcinogenic Risk (CR) values were below 10-4, which indicates no potential health risks associated with consumption of arsenic via honey at average or recommended levels.

11.
Environ Sci Technol ; 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38647522

ABSTRACT

Algae are an entry point for mercury (Hg) into the food web. Bioconcentration of Hg by algae is crucial for its biogeochemical cycling and environmental risk. Herein, considering the cell heterogeneity, we investigated the bioconcentration of coexisting isotope-labeled inorganic (199IHg) and methyl Hg (201MeHg) by six typical freshwater and marine algae using dual-mass single-cell inductively coupled plasma mass spectrometry (scICP-MS). First, a universal pretreatment procedure for the scICP-MS analysis of algae was developed. Using the proposed method, the intra- and interspecies heterogeneities and the kinetics of Hg bioconcentration by algae were revealed at the single-cell level. The heterogeneity in the cellular Hg contents is largely related to cell size. The bioconcentration process reached a dynamic equilibrium involving influx/adsorption and efflux/desorption within hours. Algal density is a key factor affecting the distribution of Hg between algae and ambient water. Cellular Hg contents were negatively correlated with algal density, whereas the volume concentration factors almost remained constant. Accordingly, we developed a model based on single-cell analysis that well describes the density-driven effects of Hg bioconcentration by algae. From a novel single-cell perspective, the findings improve our understanding of algal bioconcentration governed by various biological and environmental factors.

12.
Biomed Phys Eng Express ; 10(3)2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38604150

ABSTRACT

We have previously reported the design of a portable109Cd x-ray fluorescence (XRF) system to measure iron levels in the skin of patients with either iron overload disease, such as thalassemia, or iron deficiency disease, such as anemia. In phantom studies, the system was found to have a detection limit of 1.35µg Fe per g of tissue for a dose of 1.1 mSv. However, the system must provide accurate as well as precise measurements of iron levels in the skin in order to be suitable for human studies. The accuracy of the system has been explored using several methods. First, the iron concentrations of ten pigskin samples were assessed using both the portable XRF system and ICP-MS, and the results were compared. Overall, it was found that XRF and ICP-MS reported average values for iron in skin that were comparable to within uncertainties. The mean difference between the two methodologies was not significant, 2.5 ± 4.6µg Fe per g. On this basis, the system could be considered accurate. However, ICP-MS measurements reported a wider range of values than XRF, with two individual samples having ICP-MS results that were significantly elevated (p < 0.05) compared to XRF. SynchrotronµXRF maps of iron levels in pigskin were acquired on the BioXAS beam line of the Canadian Light Source. TheµXRF maps indicated two important features in the distribution of iron in pigskin. First, there were small areas of high iron concentration in the pigskin samples, that were predominantly located in the dermis and hypodermis at depths greater than 0.5 mm. Monte Carlo modelling using the EGS 5 code determined that if these iron 'hot spots' were located towards the back of the skin at depths greater than 0.5 mm, they would not be observed by XRF, but would be measured by ICP-MS. These results support a hypothesis that iron levels in the two samples that reported significantly elevated ICP-MS results compared to XRF may have had small blood vessels at the back of the skin. Second, the synchrotronµXRF maps also showed a narrow (approximately 100µm thick) layer of elevated iron at the surface of the skin. Monte Carlo models determined that, as expected, the XRF system was most sensitive to these skin layers. However, the simulations found that the XRF system, when calibrated against homogenous water-based phantoms, was found to accurately measure average iron levels in the skin of normal pigs despite the greater sensitivity to the surface layer. The Monte Carlo results further indicated that with highly elevated skin surface iron levels, the XRF system would not provide a good estimate of average skin iron levels. The XRF estimate could, with correction factors, provide a good estimate of the iron levels in the surface layers of skin. There is limited data on iron distribution in skin, especially under conditions of disease. If iron levels are elevated at the skin surface by diseases including thalassemia and hemochromatosis, this XRF device may prove to be an accurate clinical tool. However, further data are required on skin iron distributions in healthy and iron overload disease before this system can be verified to provide accurate measurements.


Subject(s)
Iron , Skin , Spectrometry, X-Ray Emission , Iron/analysis , Skin/metabolism , Animals , Swine , Spectrometry, X-Ray Emission/methods , Spectrometry, X-Ray Emission/instrumentation , Humans , Phantoms, Imaging , Reproducibility of Results , Mass Spectrometry/methods , Cadmium/analysis
13.
Anal Bioanal Chem ; 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38584179

ABSTRACT

Accurate quantification of nano-selenium (nSe) and other ionic Se species in aquatic environments is a prerequisite for reliable estimation of their potential hazards. In this study, a micropore membrane filtration-based method followed by ICP-MS analysis was proposed for the selective concentration and determination of nSe in the water column. Polyvinylidene fluoride (PVDF) and nylon micropore filtration membranes were proven to efficiently capture nSe under optimal conditions (retention > 91.0 ± 0.87%). At the same time, ionic selenite and selenate could escape from the membranes, realizing the isolation of nSe and ionic Se species. The interference of dissolved organic matter (DOM) during separation can be resolved by adding Ca(II) ions, which can induce the formation of DOM aggregates by cation bridging effects. nSe retained on PVDF membranes could be effectively eluted with FL-70 (a powerful alkaline surfactant) aqueous solutions (0.5%, m/v) while maintaining the original size and morphology. Although nSe trapped on nylon membranes could not be easily eluted, quantification can also be achieved after membrane digestion. Speciation of ionic selenite and selenate in the filtrate was further conducted with an anion exchange column by using HPLC coupled with ICP-MS. The developed method was used to analyze Se species in six real water samples. Spiking experiments showed that the recoveries of nSe ranged from 70.2 ± 2.7% to 85.8 ± 1.3% at a spike level of 0.2 µg/L, and the recoveries of Se(IV) and Se(VI) ranged from 83.6 ± 0.5% to 101 ± 1% at a spike level of 0.55 µg/L, verifying the feasibility for the analysis of environmental water samples. This work provides possibilities to investigate the transformation and potential risks of nSe in the environment.

14.
Anal Bioanal Chem ; 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38580889

ABSTRACT

Routine analysis of inorganic analytes in whole water samples from rivers (unfiltered river water) is rarely reported in scientific publications. However, this sample type is valuable and often used in long-term monitoring, regulation, and catchment element budgets, as it includes the dissolved, colloidal, and particulate fraction in one sample type. Preservation measures are not needed and solid-liquid partitioning can be disregarded, which simplifies automated sampling and storage procedures. In this study, we provide several digestion protocols for whole water samples from rivers and the subsequent multi-element analysis of 67 major, minor, and trace elements: Li, Be, B, Na, Mg, Al, Si, P, S, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, As, Se, Br, Rb, Sr, Y, Zr, Nb, Mo, Ru, Ag, Cd, In, Sn, Sb, Te, Cs, Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, Ta, W, Ir, Pt, Au, Hg, Tl, Pb, Bi, Th, U. In the absence of whole water reference materials for inorganic analytes, we introduce simulated whole water samples by suspending sediment reference materials as quality control measures. The applicability for improved routine water quality monitoring was successfully tested on samples from different rivers revealing variations of the element fingerprints over time.

15.
J Sep Sci ; 47(6): e2300891, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38520247

ABSTRACT

There is a strong interest in monitoring copper in environmental waters, but its direct analysis suffers from strong matrix interferences. This is why, a sample pretreatment based on solid-phase extraction (SPE) is often used but conventional sorbents usually lack specificity. It is overcome with ion-imprinted polymers (IIPs). This work evaluates for the first time the use of the dummy approach for the synthesis of Cu(II)-targeting IIPs. Two analog ions Ni(II) and Zn(II) were tested as templates and the resulting IIPs were packed in SPE cartridges. The SPE procedure was designed by optimizing a washing step following the sample percolation, to eliminate the interfering ions retained on the IIP by non-specific interactions. To optimize the washing step, solutions at different pH or containing tris(hydroxymethyl)aminomethane as a complexing agent at different concentrations were tested and combined. Zn-IIP appeared more promising than Ni-IIP, showing excellent specificity and a high selectivity. Its retention capacity was determined to be 100 µg/g, and different isotherm models were evaluated to fit with the adsorption data. Finally, applications to mineral and sea waters were successfully completed and led to high and repeatable extraction recoveries for Cu(II) (88 ± 1% and 83 ± 3%, respectively).

16.
Plants (Basel) ; 13(4)2024 Feb 17.
Article in English | MEDLINE | ID: mdl-38498553

ABSTRACT

High concentrations of toxic cadmium (Cd) in soils are problematic as the element accumulates in food crops such as rice and cacao. A mitigation strategy to minimise Cd accumulation is to enhance the competitive uptake of plant-essential metals. Theobroma cacao seedlings were grown hydroponically with added Cd. Eight different treatments were used, which included/excluded hydroponic or foliar zinc (Zn) and/or iron (Fe) for the final growth period. Analyses of Cd concentrations and natural stable isotope compositions by multiple collector ICP-MS were conducted. Cadmium uptake and translocation decreased when Fe was removed from the hydroponic solutions, while the application of foliar Zn-EDTA may enhance Cd translocation. No significant differences in isotope fractionation during uptake were found between treatments. Data from all treatments fit a single Cd isotope fractionation model associated with sequestration (seq) of isotopically light Cd in roots and unidirectional mobilisation (mob) of isotopically heavier Cd to the leaves (ε114Cdseq-mob = -0.13‱). This result is in excellent agreement with data from an investigation of 19 genetically diverse cacao clones. The different Cd dynamics exhibited by the clones and seen in response to different Fe availability may be linked to similar physiological processes, such as the regulation of specific transporter proteins.

17.
J AOAC Int ; 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38507699

ABSTRACT

BACKGROUND: Determining the concentration of nanoparticles in marine organisms is important for evaluating their environmental impact and to assess potential food safety risks to human health. OBJECTIVE: The current work aimed at developing an in-house method based on single particle inductively coupled plasma mass spectrometry suitable for surveillance of nanoparticles in mussels. METHOD: A new low-cost and simple protease mixture was utilized for sample digestion, and a novel open-source data processing was used, establishing detection limits on a statistical basis using false positive and false negative probabilities. The method was validated for 30 and 60 nm gold nanoparticles spiked to mussels as a proxy for seafood. RESULTS: Recoveries were 76-77% for particle mass concentration and 94-101% for particle number concentration. Intermediate precision was 8-9% for particle mass concentration and 7-8% for particle number concentration. Detection limits for size was 18 nm and for concentration 1.7 ng/g and 4.2 x 105 particles/g mussel tissue. CONCLUSION: The performance characteristics of the method were satisfying compared with numeric Codex criteria. Further, the method was applied to titanium-, chromium- and copper-based particles in mussels. HIGHLIGHTS: The method demonstrates a new practical and cost-effective sample treatment and streamlined, transparent and reproducible data treatment for the routine surveillance of NPs in mussels.

18.
Anal Chim Acta ; 1301: 342485, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38553115

ABSTRACT

BACKGROUND: Ag-Au bimetallic nanoparticles (BNPs), synthesized by using citrate reduction of Ag and Au ions, were used as sensor for detection of Co2+. In order to optimize sensing performance, it is necessary to control the particle size and size distribution of the original Ag-Au BNPs. Therefore, analytical methods based on the use of single particle inductively coupled plasma mass spectrometry (SP-ICP-MS) and flow-field flow fractionation (FlFFF)-ICP-MS were developed to track the signal of Ag and Au in bimetallic nanoparticles at each step of the procedure: BNP synthesis, aggregation and sensing in order to understand the sensing mechanism. To better understand colorimetric sensing of Co2+ using Ag-Au BNPs, various solution mixtures were analyzed by using SP-ICP-MS and FlFFF-ICP-MS. RESULTS: SP-ICP-MS provided the information on the core size, size distribution and particle number concentration, as well as the heterogeneity of the particles synthesized by using various citrate concentrations and metal ratios. FlFFF-ICP-MS offered the information on hydrodynamic size as well as the signal intensity ratio of Ag and Au in BNPs and for the understanding of the aggregation of BNPs arising from the [Co(II)(en)3]2+ complex surrounding the surface of the BNPs. Under optimum sensing condition, the use of SP-ICP-MS for BNPs assisted detection of Co2+ improved the sensitivity of Co2+ determination by 20-fold in comparison with the conventional spectrophotometric analysis. SIGNIFICANCE: The information obtained from SP-ICP-MS and FlFFF-ICP-MS can be combinedly used to understand sensing mechanism and to select the best condition for synthesis of BNPs used as sensor. This study illustrates the usefulness of SP-ICP-MS and FlFFF-ICP-MS in the nanoparticle-based sensor development research area.

19.
Anal Chim Acta ; 1301: 342414, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38553116

ABSTRACT

BACKGROUND: Chlorine concentrations above 1 mg kg-1 in lipid feedstocks for biofuel production can generate corrosion issues in the different refining units as well as catalyst deactivation by clogging or fouling. To reach accurate analyses by inductively coupled plasma (ICP) techniques at low concentration levels, dilution in organic solvents rises as a simpler and more straightforward sample preparation methodology than conventional sample decomposition procedures (e.g., microwave-assisted acid digestion). However, matrix effects and the impact of the Cl chemical form on the signal must be overcome to obtain accurate results. RESULTS: In this work, the high temperature torch integrated sample introduction system (hTISIS) operated at 350 °C is coupled to an inductively coupled plasma tandem mass spectrometry (ICP-MS/MS) for the determination of Cl in lipid biofuel feedstock samples diluted in xylene and these results are compared with those reported by a conventional sample introduction system. Under optimal conditions of the hTISIS-ICP-MS/MS configuration, matrix effects are efficiently overcome (recovery values ranged from 101 to 104%) as well as the effect of the Cl chemical form on the signal for 6 organochloride compounds. Thus, an external calibration approach can be set to carry out the quantification of this element in real samples. The method is successfully validated, obtaining a good agreement in the Cl concentration reported in a standard reference material (SRM NIST 1634c) and also by comparing the concentration results obtained by external calibration and standard addition approaches in two biofuel feedstock samples. SIGNIFICANCE AND NOVELTY: The hTISIS coupled to an ICP-MS/MS system is used for the first time to overcome not only matrix effects but also the impact of the Cl chemical form in biofuel feedstock samples. This novel method, with a limit of quantification (LOQ) of 7.1 µg kg-1, give access to an accurate Cl determination in all kind of lipid feedstocks for clean fuel production.

20.
J Trace Elem Med Biol ; 84: 127431, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38489923

ABSTRACT

BACKGROUND: The high quality and unique flavor and aroma of bean-to-bar chocolates have resulted in an increase in the consumption of these products. Nevertheless, cocoa beans may present inorganic contaminants from environmental and anthropogenic sources which can contribute to contamination of the chocolates, despite the fewer processing steps and few ingredients used in bean-to-bar manufacturing process compared to the industrial one. Therefore, this study aimed to evaluate the content of trace elements (As, Cd, Co, Cu, Hg, Pb, Se) in bean-to-bar chocolates and traceable cocoa beans from Brazil and Ecuador. METHODS: Bean-to-bar chocolate samples were acquired in Brazil (n=65) and Ecuador (n=10), considering the main products available: white, milk, semisweet and dark chocolate. Cocoa samples from dedicated farms (n=23) were analyzed for trace elements and inorganic contaminants regulated by Brazil and European agencies. Samples were mineralized using acid digestion (nitric acid and hydrogen peroxide) in a closed microwave-assisted system. Quantification of trace elements was performed using Inductively coupled plasma mass spectroscopy (ICP-MS) and Inductively coupled plasma optical emission spectroscopy (ICP OES) in optimized conditions. The analytical control was performed with certified reference materials (ERM BD512 - Dark Chocolate, Tort-2 and Tort-3 - Lobster Hepatopancreas and SRM 1547 - Peach leaves) and recoveries ranged between 84% and 105% for all elements. RESULTS: The trace element levels in the bean-to-bar chocolates were (mg/kg): As (<0.022-0.023), Cd (<0.002-0.74), Cu (0.11-21.2), Co (<0.003-1.88), Hg (<0.010-<0.010), Pb (<0.007-0.22), and Se (<0.029-0.35). The exposure assessment from inorganic contaminants in chocolates revealed up to 93% of provisional tolerable monthly intake (PTMI) for Cd and 123% of tolerable upper intake level (UL) for Co for children. Inorganic contaminants were also analyzed in cocoa beans from dedicated farms and Cd and Pb levels were found above the thresholds established by Brazil health agency. CONCLUSION: The results observed for both bean-to-bar chocolates and raw materials (cocoa beans from dedicated farms) indicated a need for monitoring these trace elements.

SELECTION OF CITATIONS
SEARCH DETAIL
...